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Straße 9, 48149 M̈unster, Germany
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Abstract. We investigate the dynamics of a particle in a double-well potential. There is a
critical energy greater than zero beyond which no localized motion is possible. For certain
energies smaller than the critical energy, the system can be shown to have a nonempty, bounded
invariant set. Conditions are found under which this invariant set is hyperbolic.

1. Introduction

For the dynamical systems theory the concept of hyperbolicity is of central importance (see
for example [1]). There are only a few systems for which this property can be proven
rigorously. In this note we consider a Hamiltonian scattering system with two degrees of
freedom. So far most model investigations have been concerned with arrangements of hard
disks or with potentials which are composed of repulsive parts [2, 3]. However, for a large
variety of physical scattering problems attractive potential regions play a dominant role.
We introduce a Hamiltonian system whose potential consists of two wells. This system can
be described by a map. For certain parameter values the map has a nonempty, bounded
invariant set. The investigation of this set is essential [4] to understand the scattering
behaviour of the system. In this note we derive a criterion for which the invariant set is
hyperbolic. A main tool is the construction of invariant sector bundles [5].

A concrete example is given, for which the dynamics on the invariant set is conjugated
to a full shift of finite-type.

2. The model

We investigate the motion of a particle of mass,m, in a model-potential which is given by
two radial potentials,v(r), with centres on thex-axis atR+ = R0ex andR− = −R0ex ,
R0 > 0. The range of the potential,v, is finite, i.e. outside of this range the action of the
potential is negligible and the dynamics is that of a free particle. We measure lengths in
units of this range. Furthermore, we only consider the case that the ranges of the potentials,
v, do not overlap, i.e.R0 > 1 (see figure 1). For a fixed energy,E > 0, the action of the
potentialv(r) is completely specified by the deflection function2(l) [6]:

2(l) = π − 2l
∫ ∞
r̄

dr

r2
√

2m(E − v(r))− l2

r2

(1)

where l is the angular momentum of the particle andr̄ is the classical outer turning
point, i.e. the largest zero of the denominator. Note that time-reversal symmetry implies
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Figure 1. A sketch of the geometry of the system. The interior of the circles corresponds to
the regions of nontrivial interactions.

2(l) = −2(−l). Here we are interested in attracting potential wells, i.e. the deflection
function is nonpositive. We restrict the discussion to the energy range beyond the orbiting
threshold. Furthermore, we assume that for the finitel-interval corresponding to nontrivial
scattering trajectories the deflection function is continuously differentiable. We only consider
potentials,v, for which the deflection function has a unique minimum. (This minimum is
called the rainbow angle (for examples see [6, 7])).

We setm = 1 and scale the time according to

t 7−→ 1√
2E
t. (2)

Outside the range ofv one therefore obtains for the norm of the momentum

|p| = 1. (3)

Note that the angular momentum is equal to the impact parameter and that in view of (2)
changing the energy is equivalent to changing the unit of time.

We now discuss, how the well system can be described by a map. Suppose that the
particle leaves potentiali, i ∈ {+,−}, with momentump. We denote the angle between
p andRi by βi and the angular momentum with respect toRi by li . If the particle visits
potentialj , j 6= i, the angle after leaving potentialj is given by

βj = βi − π −2(lj ). (4a)

For the angular momentum one easily obtains

lj = li + 2R0 sinβi. (4b)

A necessary condition for visiting potentialj is given by

|lj | 6 1. (4c)

Furthermore, it is required that the radial momentum with respect toRj is negative, i.e.√
1− l2i + 2 cosβi < 0. (4d)
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Conditions (4c) and (4d) combined are also sufficient for visiting potentialj .
A triple (βi, li , i) uniquely defines a trajectory of the system. On the other hand,

every trajectory which visits at least one well gives rise to a(βi, li , i)-triple. Therefore
all nontrivial trajectories of the well system will be taken into account, if one restricts
the attention to the system (4). Finite series of(βi, li , i)-triples correspond to trajectories
leaving the interaction region both in the past and in the future. Bi-infinite series belong
to trajectories staying in the interaction region for all times. Finally, forward-infinite
(backward-infinite) series describe trajectories which stay for all positive (negative) times
but leave the wells for negative (positive) times.

The last components of the triples yield an alternating series of+’s and−’s. Thus, the
only interesting components are the first and the second ones. We can describe the system
by the two-dimensional map

β ′ = β − π −2(l′) (5a)
F :

l′ = l + 2R0 sinβ. (5b)

This map has to be iterated until one of the conditions

|l| 6 1 (5c)√
1− l2+ 2 cosβ < 0 (5d)

is violated. This violation corresponds to the particle escaping from the interaction region.
Formally, the image ofF is S1 × R. Condition (5c) enforces the restriction to the

l-interval [−1, 1]. Therefore the phase space of the system is the cylinder

0 = S1× [−1, 1]. (6)

Trajectories remaining in a vicinity of the two wells for all positive and negative times
correspond to points in0 which stay in0 underFn for all n ∈ Z. In the following we are
interested in the set,3, of these points.

3. A criterion for hyperbolicity

In this section we derive a criterion forF being hyperbolic. First we give a condition for
which3 is not empty.

Theorem 1.The set,3, is not empty if and only if the minimum of the deflection function
is smaller than or equal to−π .

In order to prove the theorem it is useful to introduce two transformations. The first is
trivial and serves for simplifying formulae. We define the angle-variable

α = β + π. (7)

The mapF now reads

α′ = α − π −2(l′)
F :

l′ = l − 2R0 sinα.
(8)

Because of the geometry of the system all points in3 fulfill the condition

− π/2< α < π/2. (9)

The second transformation is given by

x = l
T :

y = l − 2R0 sinα.
(10)
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All points of 3 are mapped onto the squareQ = {(x, y)| − 1 6 x 6 1,−1 6 y 6 1} by
T . For two consecutive points(α, l) and (α′, l′) of a trajectory in3, the x-component
corresponds to the old angular momentum and they-component to the new angular
momentum. In this sense the transformationT combines two points of a trajectory in
3 to one point inQ. Because of|x − y| 6 2< 2R0 the map

α = arcsin

(
x − y
2R0

)
T −1 :

l = x
(11)

is defined onQ and mapsQ onto0. Restricted to3 andT (3), the mapsT andT −1 are
each other’s inverse.T transforms the mapF into

x ′ = y (12a)
G :

y ′ = y − 2R0 sin

(
arcsin

(
x − y
2R0

)
− π −2(y)

)
. (12b)

Consider a point inQ whose image point(x, y) underGn stays inQ and satisfies the
condition

α′(x, y) = arcsin

(
x − y
2R0

)
− π −2(y) ∈

]
−π

2
,
π

2

[
(13)

for all n ∈ Z. We denote the set of all these points by3G. It is easy to show by direct
computation that the following diagram commutes:

3
F−→ 3

T

y xT −1

3G
G−→ 3G

. (14)

We now prove theorem 1.

Proof of theorem 1. Direct computation shows that anl-value with2(l) = π implies a
fixed point ofF . By the intermediate value theorem such a value ofl exists, if the minimum
of the deflection function is smaller than or equal to−π . Therefore, the stated condition
is sufficient for nonempty3. To see that it is also necessary for us to look at the map
G. We show that for2(l) > −π the set3G is empty. SinceG is invariant under the
transformation

(x, y) 7−→ (−x,−y) (15)

it is sufficient to verify that every point of

Q0 = {(x, y) ∈ Q|y > −x} (16)

leavesQ under some iterate ofG.
AssumeQ0 ∩3G 6= ∅. We divideQ0 into two parts

Q1 = {(x, y) ∈ Q0|y > 0, y > x} (17)

Q2 = {(x, y) ∈ Q0|x > 0, y 6 x}. (18)

We show that bothQ1 ∩ 3G andQ2 ∩ 3G are empty, thus contradicting the assumption
Q0 ∩3G 6= ∅.

First we considerQ1 and claim that
(1)

G(Q1 ∩3G) ⊂ Q1 ∩3G. (19)
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(2) There is anε > 0 such that for all(x, y) ∈ Q1 ∩3G:

y ′ > y + ε. (20)

Note that this impliesQ1 ∩ 3G = ∅, because for all(x, y) ∈ Q1 ∩ 3G all images of
(x, y) are also inQ1 ∩3G, according to (19). There is ann > 0 such thaty + nε > 1 and
by (20)Gn(x, y) /∈ Q. That is a contradiction to(x, y) ∈ 3G.

So we have to prove relations (19) and (20) in order to show thatQ1 ∩3G is empty.
Inequality (20) implies (19): by (20) and (17) ofQ1 one obtains for a point(x, y) ∈ Q1∩3G:

y ′ > y + ε > 0 (21)

furthermore with (12) the inequality

y ′ > y + ε > y = x ′ (22)

holds. Therefore,Q1 ∩3G is invariant underG.
It remains to prove (20). For a point(x, y) ∈ Q1 ∩ 3G one obtainsx − y 6 0. This

implies

arcsin

(
x − y
2R0

)
∈
[
−π

2
, 0
]
. (23)

Sincey > 0 it follows that2(y) 6 0. Denoting the minimum of the deflection function by
2R one obtains

0> 2(y) > 2R > −π. (24)

Assuming2(y) ∈ [−π/2, 0] we conclude

α′(x, y) = arcsin

(
x − y
2R0

)
− π −2(y) mod 2π ∈

[
π

2
,

3π

2

[
(25)

and condition (13) is violated. So2(y) lies in the interval ]2R,−π/2[. It follows that
−π − 2(y) as well asα′(x, y) lie in the interval [−π/2, π/2]. In this interval the sine
function is monotonically increasing, such that with (23) we obtain the inequality

sinα′ = sin

(
arcsin

(
x − y
2R0

)
− π −2(y)

)
6 sin(−π −2(y)). (26)

Since2R > −π there is anε > 0 with −2R0 sin2R > ε. With (12) inequality (20)
follows:

y ′ = y − 2R0 sin(α′)
> y − 2R0 sin(−π −2(y))
> y − 2R0 sin2R

> y + ε. (27)

Having proven thatQ1 ∩3G is empty, we now want to show the same forQ2 ∩3G.
We consider the inverse ofG:

x ′ = x − 2R0 sin

(
arcsin

(
y − x
2R0

)
− π −2(x)

)
(28a)

G−1 :
y ′ = x. (28b)

Note thatG−1 can formally be obtained fromG by interchangingx andy, andx ′ and
y ′, respectively. The argument of the sine function in (28a) is given by

arcsin

(
y − x
2R0

)
− π −2(x) = −arcsin

(
x ′ − y ′

2R0

)
. (29)
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Since this argument lies in the interval ]− π/2, π/2[ one can prove in the same way as
above:

(1)

G−1(Q2 ∩3G) ⊂ Q2 ∩3G. (30)

(2) There is anε > 0 such that for all(x, y) ∈ Q2 ∩3G:

x ′ > x + ε. (31)

This implies thatQ2 ∩ 3G is empty and we conclude:3G = ∅, which proves
theorem 1. �

We now give a criterion for hyperbolicity.

Theorem 2.3 has a hyperbolic structure if

min
(β,l)∈3

(R0|2′(l)|) > max
(β,l)∈3

( −2

cosβ

)
. (32)

To prove this theorem we show that there are invariant sector bundles [5, 9]. We need
the following lemma.

Lemma. If there is an 0< ε < 1 such that for all(x, y) ∈ 3G the inequality

1+
∣∣∣2R0 cosα′(x, y) ∂α

′(x,y)
∂x

∣∣∣∣∣∣1− 2R0 cosα′(x, y) ∂α
′(x,y)
∂y

∣∣∣ < ε (33)

holds, then3G has a hyperbolic structure.

Proof of the lemma. We will show that the constant sector bundles

Suε = {(ξ, η)||ξ | 6 ε|η|} (34a)

Ssε = {(ξ, η)||η| 6 ε|ξ |} (34b)

are invariant under the JacobiansDG andDG−1, respectively. With

α′x(x, y) =
∂α′(x, y)
∂x

= 1

2R0

√
1−

(
x−y
2R0

)2
(35)

and

α′y(x, y) =
∂α′(x, y)
∂y

= −1

2R0

√
1−

(
x−y
2R0

)2
−2′(y) (36)

one obtains

DG|(x,y) =
(

0 1
−2R0 cos(α′(x, y))α′x(x, y) 1− 2R0 cos(α′(x, y))α′y(x, y)

)
. (37)

To simplify formulae we introduce the abbreviations

H1(x, y) = 1− 2R0 cos(α′(x, y))α′y(x, y) (38)

H2(x, y) = −2R0 cos(α′(x, y))α′x(x, y). (39)

The hypothesis in the lemma now is given by

1+ |H2|
|H1| < ε. (40)
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Suppose(ξ0, η0) ∈ Suε and (ξ1, η1) = DG(ξ0, η0). At first we show that theη-component
will be elongated underDG by at least a factor of 1/ε:

|η1| = |H2ξ0+H1η0|
> |H1||η0| − |H2||ξ0|. (41)

Since by definition (34a) |η0| > |ξ0|/ε one obtains

|η1| >
(
|H1| − 1

ε
|H2|

)
|η0|. (42)

With (40) the inequality

|η1| > 1

ε
|η0| (43)

follows.
By (37) ξ1 = η0, and therefore

|η1| > 1

ε
|ξ1| (44)

i.e. (ξ1, η1) ∈ Suε . This proves the invariance of the bundle (34a) underDG.
To obtain an estimate of the norm of(ξ1, η1) we use (43) and(ξ0, η0) ∈ Suε (i.e.

|ξ0| 6 ε|η0| = ε|ξ1|) to conclude

|(ξ1, η1)| > 1

ε
|(ξ0, η0)|. (45)

Thus, we have shown thatSuε is invariant underDG and the length of a vector inSuε is
elongated underDG by at least a factor of 1/ε.

In order to complete the proof of the lemma, the corresponding result forSsε andDG−1

has to be shown [5]. Due to symplecticity of the underlying system one may use a result
presented in [8]. There it is shown that for symplectic systems only one time direction has
to be considered. Here, we choose a direct way which is based on the reversible symmetry
of the well system. With

x = y
J :

y = x
(46)

we obtainG−1 = JGJ . The relationDJSsε = Suε implies: DG−1Ssε ⊂ Ssε . Since the
norm is invariant underDJ one immediately obtains the desired result and the lemma is
proven. �

Proof of theorem 2. To prove theorem 2 we express the condition of the lemma in(β, l)-
coordinates. Using (35), (36) and (11) we obtain:

α′x(α, l) =
1

2R0| cosα| (47)

α′y(α, l) =
−1

2R0| cosα| −2
′(l′). (48)

The left-hand side of (33) is given by:

1+
∣∣∣2R0 cosα′ ∂α

′(x,y)
∂x

∣∣∣∣∣∣1− 2R0 cosα′(x, y) ∂α
′(x,y)
∂y

∣∣∣ =
1+

∣∣∣ cosα′
cosα

∣∣∣∣∣∣1+ cosα′
| cosα| + 2R0 cosα′2′(l′)

∣∣∣ . (49)
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Note thatα andα′ are contained in the interval ]− π/2, π/2[. Therefore, both cosα and
cosα′ are larger than zero. By the lemma the invariant set has a hyperbolic structure if

1+ cosα′

cosα
< ε

∣∣∣∣1+ cosα′

cosα
+ 2R02

′(l′) cosα′
∣∣∣∣ . (50)

For2′(l′) > 0 this inequality holds if and only if

1+ cosα′

cosα
< ε

(
1+ cosα′

cosα
+ 2R02

′(l′) cosα′
)
. (51)

With (7) this is equivalent to

R02
′(l′) >

(
ε − 1

2ε

)(
1

cosβ ′
+ 1

cosβ

)
. (52)

For2′(l′) < 0, (50) is satisfied if and only if

1+ cosα′

cosα
+ 2R02

′(l′) cosα′ < −1

ε

(
1+ cosα′

cosα

)
. (53)

This is equivalent to

R02
′(l′) <

(
ε + 1

2ε

)(
1

cosβ ′
+ 1

cosβ

)
. (54)

Note that both sides of (32) are defined since3 is compact and the occurring functions
are continuous. If (32) is satisfied then there is aµ > 1 with

min
(β,l)∈3

(R0|2′(l)|) > µ max
(β,l)∈3

( −2

cosβ

)
. (55)

With the definitionε = 1/(2µ− 1) the relation 0< ε < 1 holds. Hence, for all(β, l) ∈ 3:

R0|2′(l′)| > min
(β,l)∈3

(R0|2′(l)|)

> µ max
(β,l)∈3

( −2

cosβ

)
> −1+ ε

2ε

(
1

cosβ ′
+ 1

cosβ

)
. (56)

Since(1− ε) < (1+ ε), relations (54) and (52) prove the theorem. �
Verifying condition (32) for a given system is much easier than verifying, for example,

condition (33). In (32) only projections onto the coordinate axes have to be considered
which is a great advantage. To elucidate our results we give an example in the following
section.

4. An example

As a deflection function we choose

2(l) =


3
√

3

2
k(l3− l)π |l| 6 1

0 |l| > 1
(57)

with k > 0. The rainbow angle is given by−kπ . For this deflection function the inverse
scattering problem can be solved. As shown in the appendix, a potential corresponding to
(57) is given by

(r(γ ), v(γ )) = (γe−
√

3k(1−γ 2)
3
2
, 1

2(1− e2
√

3k(1−γ 2)
3
2
)) (58)
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Figure 2. Potential corresponding to the deflection function (57). From top to bottom the
potentialsv(r) for k = 0.75, 1.0, 1.25 are shown.

l

Λ+

Λ+

Λ–

β

Figure 3. The sets3− and3+ for R0 = 1.1 andk = 1.9.

with γ ∈ [0, 1] andv(r) = 0 for r > 1. Figure 2 shows the potential for several values of
k. Note that the potential depth is a monotonically increasing function ofk. This means
that one can interprete increasingk as decreasing energy.

For k = 1.9 andR0 = 1.1 figure 3 shows the set,3−, of points in0 which have at
least one image point underF in 0, and the set,3+, of points which have at least one
preimage point in0. 3 is contained in the intersection of these two sets. Figure 3 gives
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l

β

Figure 4. The part0̄ of 0.

rise to the rough estimate that the absolute values ofl-components of points in3 are either
greater than 0.7 or smaller than 0.35. Furthermore, theβ-components lie in the interval
[0.6π, 1.4π ], such that by inserting the limiting values we obtain the estimate

min
(β,l)∈3

(R0|2′(l)|) > 8.01> 6.48> max
(β,l)∈3

( −2

cosβ

)
. (59)

Hence, for the chosen parameter values the system is hyperbolic by theorem 2.
We now discuss the structure of3. The β-components of points in the invariant set

are contained in the interval [π/2, 3π/2]. In figure 4 the part̄0 = [π/2, 3π/2] × [−1, 1]
of 0 is shown. The four vertical stripes correspond to points whose image points underF

are contained in̄0, the four horizontal stripes correspond to points which have at least one
pre-image point in0̄. Note that3 is contained in the intersection of the horizontal and
vertical stripes. From left to right the vertical stripes are mapped onto the horizontal stripes
from top to bottom. Since the horizontal (vertical) boundaries of the vertical stripes are
mapped onto the horizontal (vertical) boundaries of the horizontal stripes, it can be shown
by standard arguments, as discussed for example in [9], that3 is a Cantor set and the
dynamics on3 is conjugated to the full shift on a symbol space with four symbols.

5. Concluding remarks

It is easy to generalize the above results to a system consisting ofN wells whose centres
form a regularN -polygon and the distances of which are large enough such that on any
straight line there are at most two wells. In the case of hyperbolicity a complete symbolic
dynamics can be introduced. With respect to this symbolic dynamics the model discussed
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above exhibits a rich behaviour. A detailed discussion of this symbolic dynamics and its
parameter dependence is the topic of a forthcoming paper. We close with the remark that
by using the technique presented in section 3 it is an easy task to derive a criterion for the
hyperbolicity of the model introduced by Troll and Smilansky in [11].

Appendix

In this appendix we solve the inverse scattering problem (57). The method is discussed in
[7].

In our scaling the potential is identically zero forr > 1. Thus, we obtain from (1):

2(l) = π − 2
∫ ∞
r̄

dr

r2
√
(1−2v(r))

l2
− 1

r2

(60)

= π − 2
∫ ∞

1

dr

r2
√

1
l2
− 1

r2

− 2
∫ 1

r̄

dr

r2
√
(1−2v(r))

l2
− 1

r2

(61)

= 2 arccosl − 2
∫ 1

r̄

dr

r2
√
(1−2v(r))

l2
− 1

r2

. (62)

A main problem in solving the integral is the implicit dependence of the lower integral limit
from v. To get rid of this problem we introduce new variables:

y = 1

l2
(63)

x = 1

(1− 2v(r))r2
. (64)

Since purely attractive potentials are given byv(r) 6 0 for all r and dv(r)/dr > 0 for
r ∈]0, 1[, we havex ∈ [1,∞[ and dx/dr < 0 for r ∈]0, 1[. With (63) and (64) by (62) one
obtains:

2(y) = 2 arccos
1√
y
− 2

∫ 1

y

1√
y − x

√
x

r(x)

dr(x)

dx
dx. (65)

With

g(x) = −
√
x

r(x)

dr(x)

dx
(66)

and

2̃(y) = −3
√

3

4
k(y−

3
2 − y− 1

2 )π + arccos
1√
y

(67)

we obtain:

2̃(y) =
∫ y

1
dx

g(x)√
y − x dx. (68)

This is an Abelian integral equation with the solution [10]:

g(x) = 1

π

(
2̃(1)√
x − 1

+
∫ x

1

d2̃(y)

dy

dy√
x − y

)
. (69)
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A short calculation yields:

g(x) = 1

2
√
x
+ 3
√

3k

√
x − 1

2x2
. (70)

By (64) and (66) the following relation betweeng(x) andv(r(x)) holds:

d ln(1− 2v(r(x)))

dx
=

d ln 1
xr2(x)

dx
= −1

x
+ 2g(x)√

x
. (71)

Equation (70) implies:

d ln(1− 2v(r(x)))

dx
= 3
√

3k

√
x − 1

x
5
2

. (72)

Taking into account thatv(r(x = 1)) = 0 we obtain by integration:

v(r(x)) = 1
2(1− e2

√
3k(
√

x−1
x
)3). (73)

From (64) the parametrization ofr now immediately follows

r(x) = 1√
x

e−
√

3k(
√

x−1
x
)3. (74)

The last step is to defineγ = 1/
√
x.
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